shortest path algorithm - significado y definición. Qué es shortest path algorithm
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es shortest path algorithm - definición

PROBLEM OF FINDING A PATH BETWEEN TWO VERTICES (OR NODES) IN A GRAPH SUCH THAT THE SUM OF THE WEIGHTS OF ITS CONSTITUENT EDGES IS MINIMIZED
Shortest path; All pairs shortest path problem; All-pairs shortest path problem; All-pairs shortest path; All pairs shortest path; Shortest path algorithms; Shortest Path Algorithms; Shortest path algorithm; Single-destination shortest-path problem; Single-pair shortest-path problem; Single-source shortest-path problem; The Shortest Paths; Negative cycle; DAG shortest paths; Single destination shortest path problem; Single-destination shortest path problem; Singledestination shortest path problem; Single destination shortest-path problem; Singledestination shortest-path problem; Single destination shortestpath problem; Single-destination shortestpath problem; Singledestination shortestpath problem; Shortest-path problem; Shortestpath problem; Shortest-path; Shortestpath; Shortest path problems; Shortest-path problems; Shortestpath problems; Shortest paths; Shortest-paths; Shortestpaths; Single-source shortest path problem; Single source shortest path problem; Singlesource shortest path problem; Single source shortest-path problem; Singlesource shortest-path problem; Single source shortestpath problem; Single-source shortestpath problem; Singlesource shortestpath problem; Apsp; Shortest Path Problem; Shortest path routing; Shortest-path routing; Single-source shortest-paths algorithms for directed graphs with nonnegative weights; APSP; Shortest-path algorithms; Shortest-distance problems; Applications of shortest path algorithms; Algebraic path problem; Graph geodesic
  • Shortest path (A, C, E, D, F) between vertices A and F in the weighted directed graph

Shortest Path Faster Algorithm         
  • A demo of SPFA based on Euclidean distance. Red lines are the shortest path covering (so far observed). Blue lines indicate where relaxing happens, i.e., connecting <math> v </math> with a node <math> u </math> in <math> Q </math>, which gives a shorter path from the source to <math> v </math>.
GRAPH ALGORITHM
SPFA; Shortest Path Faster Algorithm
The Shortest Path Faster Algorithm (SPFA) is an improvement of the Bellman–Ford algorithm which computes single-source shortest paths in a weighted directed graph. The algorithm is believed to work well on random sparse graphs and is particularly suitable for graphs that contain negative-weight edges.
Shortest path problem         
In graph theory, the shortest path problem is the problem of finding a path between two vertices (or nodes) in a graph such that the sum of the weights of its constituent edges is minimized.
Euclidean shortest path         
THEORETICAL PROBLEM IN COMPUTATIONAL GEOMETRY
Euclidean shortest path problem
The Euclidean shortest path problem is a problem in computational geometry: given a set of polyhedral obstacles in a Euclidean space, and two points, find the shortest path between the points that does not intersect any of the obstacles.

Wikipedia

Shortest path problem

In graph theory, the shortest path problem is the problem of finding a path between two vertices (or nodes) in a graph such that the sum of the weights of its constituent edges is minimized.

The problem of finding the shortest path between two intersections on a road map may be modeled as a special case of the shortest path problem in graphs, where the vertices correspond to intersections and the edges correspond to road segments, each weighted by the length of the segment.